World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Lidar Profiling of Aerosol Optical Properties from Paris to Lake Baikal (Siberia) : Volume 14, Issue 20 (11/11/2014)

By Dieudonné, E.

Click here to view

Book Id: WPLBN0003972946
Format Type: PDF Article :
File Size: Pages 64
Reproduction Date: 2015

Title: Lidar Profiling of Aerosol Optical Properties from Paris to Lake Baikal (Siberia) : Volume 14, Issue 20 (11/11/2014)  
Author: Dieudonné, E.
Volume: Vol. 14, Issue 20
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: copernicus

Citation

APA MLA Chicago

Chazette, P., Marnas, F., Shang, X., Dieudonné, E., & Totems, J. (2014). Lidar Profiling of Aerosol Optical Properties from Paris to Lake Baikal (Siberia) : Volume 14, Issue 20 (11/11/2014). Retrieved from http://worldlibrary.org/


Description
Description: Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS/UVSQ, Gif-sur-Yvette, France. In June 2013, a ground-based mobile lidar performed the 10 000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling for the first time aerosol optical properties all the way from Western Europe to central Siberia. The instrument was equipped with N2-Raman and depolarization channels that enabled an optical speciation of aerosols in the low and middle troposphere. The backscatter-to-extinction ratio (BER) and particle depolarization ratio (PDR) at 355 nm have been retrieved. The BER in the lower boundary layer (300–700 m) was found to be 0.017 ± 0.009 sr−1 in average during the campaign, with slightly higher values in background conditions near Lake Baikal (0.021 ± 0.010 sr−1 in average) corresponding to dust-like particles. PDR values observed in Russian cities (>1.7%) are higher than the ones measured in European cities (<1.3%) due to the lifting of terrigenous aerosols by traffic on roads with a bad tarmac. Biomass burning layers from grassland or/and forest fires in southern Russia exhibit BER values ranging from 0.010 to 0.015 sr−1 and from 2 to 3% for the PDR. Desert dust aerosols originating from the Caspian and Aral seas regions were characterized for the first time, with a BER (PDR) of 0.022 sr−1 (21%) for pure dust, and 0.011 sr−1 (15%) for a mix between dust and biomass burning. The lidar observations also showed that this dust event extended over 2300 km and lasted for ~6 days. Measurements from the Moderate Resolution Imaging Spectrometer (MODIS) show that our results are comparable in terms of aerosol optical thickness (between 0.05 and 0.40 at 355 nm) with the mean aerosol load encountered throughout our route.

Summary
Lidar profiling of aerosol optical properties from Paris to Lake Baikal (Siberia)

Excerpt
Chi, X., Winderlich, J., Mayer, J.-C., Panov, A. V., Heimann, M., Birmili, W., Heintzenberg, J., Cheng, Y., and Andreae, M. O.: Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga, Atmos. Chem. Phys., 13, 12271–12298, doi:10.5194/acp-13-12271-2013, 2013.; Deuzé, J. L., Bréon, F.-M., Devaux, C., Goloub, P., Herman, M., Lafrance, B., Maignan, F., Marchand, A., Nadal, F., Perry, G., and Tanré, D.: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, J. Geophys. Res., 106, 4913–4926, doi:10.1029/2000JD900364, 2001.; Ferrare, R. A., Melfi, S. H., Whiteman, D. N., Evans, K. D., and R, L.: Raman lidar measurements of aerosol extinction and backscattering, 1. Methods and comparisons, J. Geophys. Res., 103, 19663–19672, doi:10.1029/98JD01646, 1998.; Giglio, L., Csiszar, I., and Justice, C. O.: Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res., 111, 2016, doi:10.1029/2005JG000142, 2006.; Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – a federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, doi:10.1016/S0034-4257(98)00031-5, 1998.; Huebert, B. J., Bates, T., Russell, P. B., Shi, G., Kim, Y. J., Kawamura, K., Carmichael, G., and Nakajima, T.: An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res., 108, 8633, doi:10.1029/2003JD003550, 2003.; IPCC: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.; Kaiser, J. F. and Reed, W. A.: Data smoothing using low-pass digital filters, Rev. Sci. Instrum., 48, 1447–1457, doi:10.1063/1.1134918, 1977.; King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanré, D.: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, doi:10.1109/36.124212, 1992.; Klett, J. D.: Lidar inversion with variable backscatter/extinction ratios, Appl. Optics, 24, 1638–1643, doi:10.1364/AO.25.000833, 1985.; Law, K. S., Stohl, A., Quinn, P. K., Brock, C., Burkhart, J., Paris, J.-D., Ancellet, G., Singh, H. B., Roiger, A., Schlager, H., Dibb, J., Jacob, D. J., Arnold, S. R., Pelon, J., and Thomas, J. L.: Arctic air pollution: new insights from POLARCAT-IPY, B. Am. Meteorol. Soc., doi:10.1175/BAMS-D-13-00017.1, in press, 2014.; Lebel, T., Parker, D. J., Flamant, C., Bourlès, B., Marticorena, B., Mougin, E., Peugeot, C., Diedhiou, A., Haywood, J. M., Ngamini, J. B., Polcher, J., Redelsperger, J.-L., and Thorncroft, C. D.: The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region, Q. J. Roy. Meteor. Soc., 136, 8–33,

 

Click To View

Additional Books


  • Comparison of the Levels of Organic, Ele... (by )
  • Cfd Modeling of a Vehicle Exhaust Labora... (by )
  • Low Temperatures Enhance Organic Nitrate... (by )
  • Radiative Forcing and Climate Metrics fo... (by )
  • Effects of the 2006 El Niño on Troposphe... (by )
  • Atmospheric Sub-3 Nm Particles at High A... (by )
  • Analysis of Aircraft and Satellite Measu... (by )
  • Atmospheric Nitrogen Deposition to the N... (by )
  • Surface Heterogeneity Impacts on Boundar... (by )
  • Satellite-based Evidence of Wavelength-d... (by )
  • Enhanced Soa Formation from Mixed Anthro... (by )
  • Ozonolysis of Surface Adsorbed Methoxyph... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.