World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Upwelling Into the Lower Stratosphere Forced by Breaking Tropical Waves: Evidence from Chemical Tracers : Volume 12, Issue 8 (07/08/2012)

By Engida, Z.

Click here to view

Book Id: WPLBN0003973451
Format Type: PDF Article :
File Size: Pages 45
Reproduction Date: 2015

Title: Upwelling Into the Lower Stratosphere Forced by Breaking Tropical Waves: Evidence from Chemical Tracers : Volume 12, Issue 8 (07/08/2012)  
Author: Engida, Z.
Volume: Vol. 12, Issue 8
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Folkins, I., & Engida, Z. (2012). Upwelling Into the Lower Stratosphere Forced by Breaking Tropical Waves: Evidence from Chemical Tracers : Volume 12, Issue 8 (07/08/2012). Retrieved from

Description: Department of Physics and Atmospheric Science, Dalhousie University Halifax, B3H 3J5, Nova Scotia, Canada. Measurements from the Microwave Limb Sounder (MLS) on the 68 hPa pressure level from 1 January 2005 to 31 December 2010 are used to calculate the coherence between anomalies in the tropical mean mixing ratios of H2O, CO, and N2O, and 100 hPa temperature. We show that the fluctuations of lower stratospheric water vapor in the subseasonal and multiyear time windows are generated by different physical mechanisms. In the subseasonal time window, the spatial pattern of the coherence between 100 hPa temperature and water vapor, and the time lag, show that the variability in lower stratospheric water vapor is dominated by fluctuations in upwelling forced by the dissipation of tropical Rossby waves. In the multiyear time window, the variability of lower stratospheric water vapor is more strongly coherent with temperature fluctuations on the 100 hPa surface in regions where the annual mean temperature is colder than 194 K. In addition, the 68 hPa water vapor anomalies lag the 100 hPa temperature anomalies by roughly 140 days. In this time window, the variability of lower stratospheric water vapor is therefore dominated by changes in the temperature dependent dehydration efficiency which modulate the water vapor stratospheric entry mixing ratio. On subseasonal timescales, the spatial pattern of the coherence between 100 hPa temperature and 68 hPa CO anomalies is very similar to the pattern of coherence between 100 hPa temperature and the Real-time Multivariate MJO series 1 (RMM1) index of the Madden Julian Oscillation (MJO). The MJO therefore has a strong influence on the subseasonal variability of CO in the lower stratosphere. The subseasonal 68 hPa CO and H2O anomalies lag the 100 hPa temperature anomalies by 3.16 and 2.51 days, respectively. The similarity between the two time lags suggests that the subseasonal CO anomalies can also be attributed to changes in upwelling. The multiyear variability in lower stratospheric N2O appears to be dominated by the Quasi Biennial Oscillation (QBO).

Upwelling into the lower stratosphere forced by breaking tropical waves: evidence from chemical tracers

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, doi:10.1029/1999RG000073, 2001.; Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry {Experiment} ({ACE}): Mission overview, Geophys. Res. Lett., 32, L15S01, doi:10.1029/2005GL022386, 2005.; Boehm, M. T. and Lee, S.: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer}-{Dobson Circulation, J. Atmos. Sci., 60, 247–261, 2.0.CO;2>doi:10.1175/1520-0469(2003)060<0247:TIOTRW>2.0.CO;2, 2003.; Bouttier, F. and Rabier, F.: The operational implementation of 4{D}-{Var}, ECMWF Newsletter, 2–5, 1997.; Bosilovich, M. G., Chen, J., Robertson, F. R., and Adler, R. F.: Evaluation of global precipitation in reanalyses, J. Appl. Meteorol. Clim., 47, 2279–2299, doi:10.1175/2008JAMC1921.1, 2008.; Calvo, N., Garcia, R. R., and Marsh, W. J. R. D. R.: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, 2331–2340, doi:10.1175/2010JAS3433.1, 2010.; D'Amelio, M. T. S., Gatti, L. V., Miller, J. B., and Tans, P.: Regional N2O fluxes in Amazonia derived from aircraft vertical profiles, Atmos. Chem. Phys., 9, 8785–8797, doi:10.5194/acp-9-8785-2009, 2009.; Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P. H., Kr{ü}ger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S., Baumgaertner, A., Braesicke, P., Br{ü}hl, C., Chipperfield, M., Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque, J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S., Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., and Yamashita, Y.: Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995, 2011.; Dee, D. P. and Uppala, S.: Variational bias correction of satellite radiance data in the ERA}-{Interim reanalysis, Q. J. Roy. Meteorol. Soc., 135, 1830–1841, doi:10.1002/qj.493, 2009.; Duchon, C. E.: Lanczos filtering in one and two dimensions, J. Appl.


Click To View

Additional Books

  • Classifying Previously Undefined Days fr... (by )
  • Size Distributions of Non-volatile Parti... (by )
  • Validation of Version-4.61 Methane and N... (by )
  • Spatiotemporal Variations of Air Polluta... (by )
  • Explicit Modeling of Volatile Organic Co... (by )
  • Distinguishing the Drivers of Trends in ... (by )
  • Investigations of Aerosol Impacts on Hur... (by )
  • Time Dependence of Immersion Freezing : ... (by )
  • Flight-based Chemical Characterization o... (by )
  • Global Co2 Fluxes Estimated from Gosat R... (by )
  • High Resolution Vertical Distributions o... (by )
  • The Quantitative Infrared and Nir Spectr... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.