World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Uncertainties in Assessing the Environmental Impact of Amine Emissions from a Co2 Capture Plant : Volume 14, Issue 6 (31/03/2014)

By Karl, M.

Click here to view

Book Id: WPLBN0003983148
Format Type: PDF Article :
File Size: Pages 61
Reproduction Date: 2015

Title: Uncertainties in Assessing the Environmental Impact of Amine Emissions from a Co2 Capture Plant : Volume 14, Issue 6 (31/03/2014)  
Author: Karl, M.
Volume: Vol. 14, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Solberg, S., Simpson, D., Svendby, T., Castell, N., Karl, M., Walker, S.,...Wright, R. F. (2014). Uncertainties in Assessing the Environmental Impact of Amine Emissions from a Co2 Capture Plant : Volume 14, Issue 6 (31/03/2014). Retrieved from

Description: Norwegian Institute for Air Research, NILU, Kjeller, Norway. In this study, a new model framework that couples the atmospheric chemistry transport model system WRF-EMEP and the multimedia fugacity level III model was used to assess the environmental impact of amine emissions to air from post-combustion carbon dioxide capture. The modelling framework was applied to a typical carbon capture plant artificially placed at Mongstad, west coast of Norway. WRF-EMEP enables a detailed treatment of amine chemistry in addition to atmospheric transport and deposition. Deposition fluxes of WRF-EMEP simulations were used as input to the fugacity model in order to derive concentrations of nitramines and nitrosamine in lake water. Predicted concentrations of nitramines and nitrosamines in ground-level air and drinking water were found to be highly sensitive to the description of amine chemistry, especially of the night time chemistry with the nitrate (NO3) radical. Sensitivity analysis of the fugacity model indicates that catchment characteristics and chemical degradation rates in soil and water are among the important factors controlling the fate of these compounds in lake water. The study shows that realistic emission of commonly used amines result in levels of the sum of nitrosamines and nitramines in ground-level air (0.6–10 pg m−3) and drinking water (0.04–0.25 ng L−1) below the current safety guideline for human health enforced by the Norwegian Environmental Directorate. The modelling framework developed in this study can be used to evaluate possible environmental impacts of emissions of amines from post-combustion capture in other regions of the world.

Uncertainties in assessing the environmental impact of amine emissions from a CO2 capture plant

Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A. S. H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., and Yttri, K. E.: Lessons learnt from the first EMEP intensive measurement periods, Atmos. Chem. Phys., 12, 8073–8094, doi:10.5194/acp-12-8073-2012, 2012.; Angove, D., Azzi, M., Tibbett, A., and Campbell, I.: An investigation into the photochemistry of monoethanolamine (MEA) in NOx. in: Recent Advances in Post-Combustion CO2 Capture Chemistry, ACS Symposium Series, Washington, DC, vol. 1097, chap. 14, 265–273, 2012.; Berge, E. and Jakobsen, H. A.: A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe, Tellus, 50, 205–223, 1998.; Briggs, G. A.: Plume Rise, US Atomic Energy Commission, Springfield, USA, 1969.; Briggs, G. A.: Some recent analyses of plume rise observation, in: Proceedings of the Second International Clean Air Congress, edited by: Englund, H. M. and Berry, W. T., Academic Press, Washington, USA, 6–11 December , 1970, 1029–1032, 1971.; Briggs, G. A.: Plume rise predictions, in: Lectures on Air Pollution and Environmental Impact Analysis, edited by: Haugen, D. A., Amer. Meteor. Soc., Boston, MA, 59–111, 1975.; California EPA: Public Health Goal for N-nitrosodimethylamine in Drinking Water, California Environmental Protection Agency, Pesticide and Environmental Toxicology Branch, available at: (last access: 10 December 2013), 2006.; Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri, A., Bessagnet, B., D'Angiola, A., D'Isidoro, M., Gauss, M., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L., Russo, F., Solberg, S., Stordal, F., and Tampieri, F.: Air quality trends in Europe over the past decade: a first multi-model assessment, Atmos. Chem. Phys., 11, 11657–11678, doi:10.5194/acp-11-11657-2011, 2011.; Dai, N., Shah, A. D., Hu, L., Plewa, M. J., McKague, B., and Mitch, W. A.: Measurement of nitrosamine and nitramines formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol., 46, 9793–9801, 2012.; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.; de Koeijer, G., Talstad, V. R., Nepstad, S., Tønnesen, D., Falk-Pedersen, O., Maree, Y., and Nielsen, C.: Health risk analysis of emissions to air from CO2 Technology Center Mongstad, Int. J. Greenh. Gas Con., 18, 200–207, 2013.; Drewes, J. E., Hoppe, C., and Jennings, T.: Fate and transport of n-nitrosamines under conditions simulating full-scale groundwater recharge operations, Water Environ. Res., 78, 2466–2473, doi:10.2175/106143006x115408, 2006.; Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part 2: Thermodynamic properties and gas/particle partitioning, Atmos. Environ., 45, 561–577, 2011.; Fagerli, H. and Aas, W.: Trends of nitrogen


Click To View

Additional Books

  • Middle Atmospheric Water Vapor and Ozone... (by )
  • A Case Study of Aerosol Processing and E... (by )
  • No2 Seasonal Evolution in the North Subt... (by )
  • What Caused Extreme Ozone Concentrations... (by )
  • On the Radiative Impact of Aerosols on P... (by )
  • The Evolution of the Global Aerosol Syst... (by )
  • Ship Plume Dispersion Rates in Convectiv... (by )
  • Estimating Mercury Emission Outflow from... (by )
  • An Inverse Modeling Method to Assess the... (by )
  • An Attempt at Estimating Paris Area Co2 ... (by )
  • Aerosol Dynamics Simulations on the Conn... (by )
  • Radical Budget Analysis in a Suburban Eu... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.