World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Multi-channel Ground-penetrating Radar to Explore Spatial Variations in Thaw Depth and Moisture Content in the Active Layer of a Permafrost Site : Volume 3, Issue 3 (02/11/2009)

By Wollschläger, U.

Click here to view

Book Id: WPLBN0003988426
Format Type: PDF Article :
File Size: Pages 28
Reproduction Date: 2015

Title: Multi-channel Ground-penetrating Radar to Explore Spatial Variations in Thaw Depth and Moisture Content in the Active Layer of a Permafrost Site : Volume 3, Issue 3 (02/11/2009)  
Author: Wollschläger, U.
Volume: Vol. 3, Issue 3
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Roth, K., Yu, Q., Gerhards, H., & Wollschläger, U. (2009). Multi-channel Ground-penetrating Radar to Explore Spatial Variations in Thaw Depth and Moisture Content in the Active Layer of a Permafrost Site : Volume 3, Issue 3 (02/11/2009). Retrieved from

Description: Institute of Environmental Physics, Heidelberg University, 69120 Heidelberg, Germany. Multi-channel ground-penetrating radar was applied at a permafrost site on the Tibetan Plateau to investigate the influence of surface properties and soil texture on the late-summer thaw depth and average soil moisture content of the active layer. Measurements were conducted on an approximately 85×60 m2 sized area with surface and soil textural properties that ranged from medium to coarse textured bare soil to finer textured, vegetated areas covered with fine, wind blown sand, and it included the bed of a gravel road. The survey allowed a clear differentiation of the various units. It showed (i) a shallow thaw depth and low average soil moisture content below the sand-covered, vegetated area, (ii) an intermediate thaw depth and high average soil moisture content along the gravel road, and (iii) an intermediate to deep thaw depth and low to intermediate average soil moisture content in the bare soil terrain. From our measurements, we found plausible hypotheses for the permafrost processes at this site leading to the observed late-summer thaw depth and soil moisture conditions. The study clearly indicates the complicated interactions between surface and subsurface state variables and processes in this environment. In addition, the survey demonstrates the potential of multi-channel ground-penetrating radar to efficiently map thaw depth and soil moisture content of the active layer with high spatial resolution at scales from a few meters to a few kilometers.

Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site

Annan, A. P. and Davis, J. L.: Impulse radar sounding in permafrost, Radio Sci., 4, 383–394, 1976.; Arcone, S. A., Lawson D. E., Delaney, A. J., and Strasser, J. C.: Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost, Geophysics, 63, 1573–1584, 1998.; Bradford, J. H.: Measuring water content heterogeneity using multifold GPR with reflection tomography, Vadose Zone J., 7, 184–193, 2008.; Bradford, J. H., McNamara, J. P., Bowden, W., and Gooseff, M. N.: Measuring thaw depth beneath peat-lined arctic streams using ground-penetrating radar, Hydrol. Proc., 19, 2689–2699, 2005.; Brosten, T. R., Bradford, J. H., McNamara, J. P., Zarnetske, J. P., Gooseff, M. N., and Bowden, W.: Profiles of temporal thaw depths beneath two arctic stream types using ground-penetrating radar, Permafrost Periglac. Proc., 17, 341–355, 2006.; Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B., and Johnston, M. E.: Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar, J. Hydrol., 373, 479–486, 2009.; Brown. J., Hinkel, K. M., and Nelson, F. E.: The Circumpolar Active Layer Monitoring (CALM) Program: Research designs and initial results, Polar Geogr., 24, 165–258, 2000.; Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res., 112, F02S03, doi:10.1029/2006JF000631, 2007.; Davis, J. L. and Annan, A. P.: Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophys. Prospect., 37, 531–551, 1989.; Duguay, C. R., Zhang, T., Leverington, D. W., and Romanovsky, V. E.: Satellite remote sensing of permafrost and seasonally frozen ground. In: Duguay, C.R. and Pietroniro, A.: Remote sensing in northern hydrology. Measuring environmental change. AGU Geophysical Monograph 163, 91–118, 2005.; Gasse, F., Arnold, M., Fontes, J. C., Fort, M., Gibert, E., Huc, A., Li Bingyan, Li Yuanfang, Liu Qing, Mélières, F., Van Campo, E., Wang Fubao, and Zhang Qingsong: A 13.000-year climate record from western Tibet, Nature, 353, 742–745, 1991.; Gerhards, H., Wollschläger, U., Yu, Q., Schiwek, P., Pan, X., and Roth, K.: Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground penetrating radar, Geophysics, 73, J15–J23, doi:10.1190/1.2943669, 2008.; Greaves, R. J., Lesmes, D. P., Lee, J. M., and Toksöz: Velocity variations and water content estimated from multi-offset ground-penetrating radar, Geophysics, 61, 683–695, 1996.; Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., Paetzold, R., Kimble, J. M., and Travis, R.: Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska, Permafrost Periglac. Process., 12, 179–190, 2001.; Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active layer thickness at C}ircumpolar {A}ctive {L}ayer {M}onitoring {(CALM) sites in northern {A}laska, 1995–2000, J. Geophys. Res., 108, D2, 8168, doi:10.1029/2001JD000927, 2003.; Hinzman, L. D., Bettez, N. D., Bolton, W. R., et al.: Evidence and implications of recent climate change in northern Alaska and other arctic regions, Clim. Change, 72, 251–298, 2005.; Jin, H., Chang, X. L., and Wang, S. L.: Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene, J. Geophys. Res., 112, F02S09, doi:10.1029/2006JF000521, 2007.; Kaatze, U.: Complex permittivity of water as a function of frequency and temperature, J. Chem. Eng. Data, 34, 371–374, 1998.; Kane, D. L., Hinzman, L. D., and Zarling, J. P.: Thermal response of the active layer to climatic warming in a permafrost environment, Cold Reg. Sci. Technol., 19, 111–122, 1998.; Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T.: Observations: Changes in snow


Click To View

Additional Books

  • Glacier Ice in Rock Glaciers: a Case Stu... (by )
  • Brief Communication the 2013 Erebus Glac... (by )
  • Response of the Large-scale Subglacial D... (by )
  • A Model Study of the Energy and Mass Bal... (by )
  • Simulation of Permafrost and Seasonal Th... (by )
  • Spatial Structures in the Heat Budget of... (by )
  • Combining Damage and Fracture Mechanics ... (by )
  • On the Characteristics of Sea Ice Diverg... (by )
  • A Computationally Efficient Model for th... (by )
  • A Full-stokes Ice Flow Model for the Vic... (by )
  • Exploring the Utility of Quantitative Ne... (by )
  • Effects of Nonlinear Rheology, Temperatu... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.