World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Quantifying Atmospheric Nitrate Formation Pathways Based on a Global Model of the Oxygen Isotopic Composition (Δ17O) of Atmospheric Nitrate : Volume 9, Issue 14 (28/07/2009)

By Alexander, B.

Click here to view

Book Id: WPLBN0003994956
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: Quantifying Atmospheric Nitrate Formation Pathways Based on a Global Model of the Oxygen Isotopic Composition (Δ17O) of Atmospheric Nitrate : Volume 9, Issue 14 (28/07/2009)  
Author: Alexander, B.
Volume: Vol. 9, Issue 14
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Hastings, M. G., Allman, D. J., Dachs, J., Alexander, B., Thornton, J. A., & Kunasek, S. A. (2009). Quantifying Atmospheric Nitrate Formation Pathways Based on a Global Model of the Oxygen Isotopic Composition (Δ17O) of Atmospheric Nitrate : Volume 9, Issue 14 (28/07/2009). Retrieved from

Description: Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA. The oxygen isotopic composition (Δ17O) of atmospheric nitrate is a function of the relative abundance of atmospheric oxidants (O3, ROx=OH+HO2+RO2) and the formation pathway of nitrate from its precursor NOx (=NO+NO2). Coupled observations and modeling of nitrate Δ17O can be used to quantify the relative importance of chemical formation pathways leading to nitrate formation and reduce uncertainties in the budget of reactive nitrogen chemistry in the atmosphere. We present the first global model of atmospheric nitrate Δ17O and compare with available observations. The largest uncertainty for calculations of nitrate Δ17O is the unconstrained variability in the Δ17O value of tropospheric ozone. The model shows the best agreement with a global compilation of observations when assuming a Δ17O value of tropospheric ozone equal to 35‰ and preferential oxidation of NOx by the terminal oxygen atoms of ozone. Calculated values of annual-mean nitrate Δ17O in the lowest model layer (0–200 m above the surface) vary from 7‰ in the tropics to 41‰ in the polar-regions. The global, annual-mean tropospheric inorganic nitrate burden is dominated by nitrate formation via NO2+OH (76%), followed by N2O5 hydrolysis (18%) and NO3+DMS/HC (4%). Calculated nitrate Δ17O is sensitive to the relative importance of each nitrate formation pathway, suggesting that observations of nitrate Δ17O can be used to quantify the importance of individual reactions (e.g. N2O5 hydrolysis) leading to nitrate formation if the Δ17O value of ozone is known.

Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate

Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, doi:10.1029/2003JD004218, 2004.; Alexander, B., Savarino, J., Lee, C. C. W., Park, R. J., Jacob, D. J., Li, Q., Yantosca, R. M., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659, 2005.; Benkovitz, C.M., Schultz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global, gridded inventories for anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–29253, 1996.; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073–23095, 2001.; Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal, J. Geophys. Res, 113, D03303, doi:10.1029/2006JF008309, 2008.; Brothers, L. A., Dominguez, G., Fabian, P., and Thiemens, M. H.: Using multi-isotope tracer methods to understand the sources of nitrate in aerosols, fog and river water in Podocarpus National Forest, Ecuador, Eos Trans. AGU, 89, Abstract A11C-0136, 2008.; Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res, 114, D00F10, doi:10.1029/2008JD011679, 2009.; Carpenter, L. J., Monks, P. S., Bandy, B. J., and Penkett, S. A.: A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemispheres, J. Geophys. Res, 102, 25417–25427, 1997.; Casciotti, K.L., Sigman, D. M., Hastings, M. G., Bohlke, K. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, 2002.; Chance, K.: Analysis of BrO Measurements from the Global Ozone Monitoring Experiment, Geophys. Res. Lett., 25, 3335–3338, 1998.; Dachs, J., Calleja, M. L., Duarte, C. M., Vento, S. d., Turpin, B., Polisori, A., Herndl, G. J., and Agusti, S.: High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic, Geophys. Res. Lett., 32, L21807, doi:10.1029/2005GL023799, 2005.; Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295–5311, 2008.; DeMore, B., W., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ., 97-4, 1–278., 1997.; Dentener, F. J., and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res, 98, 7149–7163, 1993.; Duarte, C. M., Dachs, J., Llabres, M., ALonso-Laita, P., Gasol, J. M., Tovar-Sanchez, A., Sanudo-Wilhemy, S., and Agusti, S.: Aerosol inputs enhance new production in the subtropical northeast Atlantic, J. Geophys. Res, 111, G04006, doi:10.1029/2005JG000140, 2006.; Dubey, M.K., Mohrschladt, R., Donahue, N. M., and Anderson, J. G.: Isotope-specific kinetics of


Click To View

Additional Books

  • Peroxynitric Acid (Ho2No2) Measurements ... (by )
  • Elucidating Determinants of Aerosol Comp... (by )
  • Towards a Better Representation of the S... (by )
  • The Two-day Wave in the Antarctic and Ar... (by )
  • Hourly Elemental Concentrations in Pm2.5... (by )
  • Putting the Clouds Back in Aerosol-cloud... (by )
  • Effects of Urban Land Expansion on the R... (by )
  • Short- and Medium-term Atmospheric Const... (by )
  • Quantifying Black Carbon from Biomass Bu... (by )
  • Transport and Mixing Patterns Over Centr... (by )
  • Sulfur-containing Particles Emitted by C... (by )
  • Corrigendum to Particle Hygroscopicity D... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.