World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Quantifying Transport Into the Lowermost Stratosphere Using Simultaneous In-situ Measurements of Sf6 and Co2 : Volume 9, Issue 16 (19/08/2009)

By Bönisch, H.

Click here to view

Book Id: WPLBN0003995008
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Quantifying Transport Into the Lowermost Stratosphere Using Simultaneous In-situ Measurements of Sf6 and Co2 : Volume 9, Issue 16 (19/08/2009)  
Author: Bönisch, H.
Volume: Vol. 9, Issue 16
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Engel, A., Bönisch, H., Hoor, P., Birner, T., & Curtius, J. (2009). Quantifying Transport Into the Lowermost Stratosphere Using Simultaneous In-situ Measurements of Sf6 and Co2 : Volume 9, Issue 16 (19/08/2009). Retrieved from http://worldlibrary.org/


Description
Description: Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany. The seasonality of transport and mixing of air into the lowermost stratosphere (LMS) is studied using distributions of mean age of air and a mass balance approach, based on in-situ observations of SF6 and CO2 during the SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) aircraft campaigns. Combining the information of the mean age of air and the water vapour distributions we demonstrate that the tropospheric air transported into the LMS above the extratropical tropopause layer (ExTL) originates predominantly from the tropical tropopause layer (TTL). The concept of our mass balance is based on simultaneous measurements of the two passive tracers and the assumption that transport into the LMS can be described by age spectra which are superposition of two different modes. Based on this concept we conclude that the stratospheric influence on LMS composition is strongest in April with extreme values of the tropospheric fractions (Α1) below 20% and that the strongest tropospheric signatures are found in October with Α1 greater than 80%. Beyond the fractions, our mass balance concept allows us to calculate the associated transit times for transport of tropospheric air from the tropics into the LMS. The shortest transit times (<0.3 years) are derived for the summer, continuously increasing up to 0.8 years by the end of spring. These findings suggest that strong quasi-horizontal mixing across the weak subtropical jet from summer to mid of autumn and the considerably shorter residual transport time-scales within the lower branch of the Brewer-Dobson circulation in summer than in winter dominates the tropospheric influence in the LMS until the beginning of next year's summer.

Summary
Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2

Excerpt
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press, 1987.; Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsa, E. J., Weinstock, E. M., and Bui, T. P.: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Implications for stratospheric transport, J. Geophys. Res., 104, 26581–26595, 1999.; Andrews, A. E., Boering, K. A., Wofsy, S. C., Daube, B. C., Jones, D. B., Alex, S., Loewenstein, M., Podolske, J. R., and Strahan, S. E.: Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: Quantitative evidence for a subtropical barrier to horizontal transport, J. Geophys. Res., 106(D10), 10257–10274, 2001.; Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal variation of mass transport across the tropopause, J. Geophys. Res., 101(D10), 15071–15078, doi:10.1029/96JD00821, 1996.; Berthet, G., Esler, J. G., and Haynes, P. H.: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere, J. Geophys. Res., 112, D18102, doi:10.1029/2006JD008295, 2007.; Birner, T.: Fine-scale structure of the extratropical tropopause region, J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301, 2006.; Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Podolske, J. R., and Keim, E. R.: Tracer-tracer relationships and lower stratospheric dynamics: CO2 and N2O correlations during SPADE, Geophys. Res. Lett., 21(23), 2567–2570, 1994.; Boering, K. A., Wofsy, S. C., Daube, B. C., Schneider, H. R., Loewenstein, M., and Podolske, J. R.: Stratospheric mean ages and transport rates from observations of carbon-dioxide and nitrous-oxide, Science, 274, 1340–1343, 1996.; Bönisch, H., Hoor, P., Gurk, Ch., Feng, W., Chipperfield, M., Engel, A., and Bregman, B.: Model evaluation of CO2 and SF$_6$ in the extratropical UT/LS region, J. Geophys. Res., 113, D06101, doi:10.1029/2007JD008829, 2008.; Brioude, J., Cammas, J.-P., Cooper, O. R., and Nedelec, P.: Characterization of the composition, structure, and seasonal variation of the mixing layer above the extratropical tropopause as revealed by MOZAIC measurements, J. Geophys. Res., 113, D00B01, doi:10.1029/2007JD009184, 2008.; Chen, P.: Isentropic cross-tropopause mass exchange in the extratropics, J. Geophys. Res., 100, 16661–16674, 1995.; Chhikara, R. S. and Folks, J. L.: The Inverse Gaussian Distribution: Theory, Methodology and Applications, Marcel Dekker, New York, 1989.; Curtius, J., Weigel, R., V�ssing, H.-J., Wernli, H., Werner, A., Volk, C.-M., Konopka, P., Krebsbach, M., Schiller, C., Roiger, A., Schlager, H., Dreiling, V., and Borrmann, S.: Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements, Atmos. Chem. Phys., 5, 3053–3069, 2005.; Dessler, A. E., Hintsa, E. J., Weinstock, E. M., Anderson, J. G., and Chan, K. R.: Mechanisms controlling water vapor in the lower stratosphere: A tale of two stratospheres, J. Geophys. Res., 100, 23167–23172, 1995.; Dvortsov, V. L., Geller, M. A., Solomon, S., Schauffler, S. M., Atlas, E. L., and Blake, D. R.: Rethinking reactive halogen budgets in the midlatitude lower stratosphere, Geophys. Res. Lett., 26, 1699–1702, 1999.; Elkins, J. W., Fahey, D. W., Gilligan, J. M., Dutton, G. S., Baring, T. J., Volk, C. M., Dunn, R. E., Myers, R. C., Montzka, S. A., Wamsley, P. R., Hayden, A. H., Butler, J. H., Thompson, T. M., Swanson, T. H., Dlugokencky, E. J., Novelli, P. C., Hurst, D. F., Lobert, J. M., Ciciora, S. J., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Fraser, P. J., Steele, L. P., and Lucarelli, M. P.: Airborne gas chromatograph for in situ measurements of long lived species in the upper troposphere and lower stratosphere, Geophys. Res. Lett., 23, 347–350, 1996.; Hall, T. M.

 

Click To View

Additional Books


  • Assessment of Uncertainties of an Aircra... (by )
  • Production and Growth of New Particles D... (by )
  • Sensitivity of Tropospheric Loads and Li... (by )
  • Hygroscopicity and Chemical Composition ... (by )
  • Measured and Predicted Aerosol Light Sca... (by )
  • Technical Note Formal Blind Intercompari... (by )
  • Modeling and Sensitivity Analysis of Tra... (by )
  • Performance Evaluation of a High-resolut... (by )
  • Kinetic Double-layer Model of Aerosol Su... (by )
  • Anthropogenic Co2 Flux Constraints in th... (by )
  • Towards Closing the Gap Between Hygrosco... (by )
  • Properties of Atmospheric Humic-like Sub... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.