World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Quantifying the Roles of Ocean Circulation and Biogeochemistry in Governing Ocean Carbon-13 and Atmospheric Carbon Dioxide at the Last Glacial Maximum : Volume 5, Issue 4 (18/11/2009)

By Tagliabue, A.

Click here to view

Book Id: WPLBN0004006157
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: Quantifying the Roles of Ocean Circulation and Biogeochemistry in Governing Ocean Carbon-13 and Atmospheric Carbon Dioxide at the Last Glacial Maximum : Volume 5, Issue 4 (18/11/2009)  
Author: Tagliabue, A.
Volume: Vol. 5, Issue 4
Language: English
Subject: Science, Climate, Past
Collection: Periodicals: Journal and Magazine Collection (Contemporary)
Subcollection: Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Description: Laboratoire des Sciences du Climat et de l'Environnement, IPSL-CEA-CNRS-UVSQ, 91191 Gif sur Yvette, France. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.

Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum

Adkins, J. F., Ingersoll, A. P., and Pasquero, C.: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating, Quaternary Sci. Rev., 24, 581–594. 2005.; Alkama, R., Kageyama, M., Ramstein, G., et al.: Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate, Clim. Dynam., }{30, 855–869, 2007.; Arsouze, T., Dutay, J.-C., Kageyama, M., Lacan, F., Alkama, R., Marti, O., and Jeandel, C.: A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum, Clim. Past, 4, 191–203, 2008.; Aumont, O. and Bopp, L.: Globalizing results from in situ iron fertilization studies, Global. Biogeochem. Cy., 20, GB2017, doi:10.1029/2005GB002591, 2006.; de Baar H. J. W., Boyd, P. W., Coale, K. H., et al.: Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment, J. Geophys. Res, 110, C09S16, doi:10.1029/2004JC002601, 2005.; Bird, M. I., Lloyd, J., and Farquhar, G.: Terrestrial Carbon storage at the LGM, Nature 371, p. 566, 1994.; Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., et al.: Atlantic meridional overturning circulation during the Last Glacial Maximum, Science, 316, 66–69, 2007.; Bopp, L., Kohfeld, K. E., Le Quéré, C., and Aumont, O.: Dust impact on marine biota and atmospheric CO2 during glacial periods, Paleoceanography, 18(2), 1046, doi:10.1029/2002PA000810, 2003.; Broecker, W. S.: Ocean geochemistry during glacial time, Geochim. Cosmochim. Acta, {46, }1689–1705, 1982.; Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202, doi:10.1029/2006PA001380, 2007.; Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution of δ13C of $§igma $CO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021, 2005.; Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deep water source variations during the last climatic cycle and their impact on the global deep water circulation, Paleoceanography, 3, 343–360, 1988.; Francois, R., Altabet, M. A., Yu, E. F., et al.: Contribution of Southern Ocean stratification to low atmospheric CO2 concentrations during the last glacial maximum, Nature, 389, 929–935, 1997.; Ganeshram, R., Pedersen, T., Calvert, S., McNeill, G., and Fontugne, M.: Glacial-Interglacial Variability in Denitrification in the World's Oceans: Causes and Consequences, Paleoceanography, 15, 361–376, 2000; Kageyama, M., Mignot, J., Swingedouw, D., Marzin, C., Alkama, R., and Marti, O.: Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model, Clim. Past, 5, 551–570, 2009.; Keigwin, L. D. and Boyle, E. A.: Did North Atlantic overturning halt 17000 years ago?, Paleoceanography, 23, PA1101, doi:10.1029/2007PA001500, 2008.; Kohfeld, K. E., Le Quere, C., Harrison, S. P., and Anderson, R. F.: Role of marine biology in glacial-interglacial CO2 cycles, Science, 308, 74–78, 2005.; Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, doi:10.1029/2004GB002247, 2004.; Kurahashi-Nakamura, T., Abe-Ouchi, A., Yamanaka, Y., and Misumi, K.: Compound effects of Antarctic sea ice on atmospheric pCO2 change during glacial-interglacial cycle, Geophys. Res. Lett., 34, L20708, doi:10.1029/2007GL030898, 2007.; Madec, G., Delecluse, P., Imbard, M., and


Click To View

Additional Books

  • Interglacial and Glacial Variability fro... (by )
  • Analysis of Local Aws and Ncep/Ncar Rean... (by )
  • A Comparison of Model Simulations of Asi... (by )
  • Water-soluble Organic Carbon in Snow and... (by )
  • Simulated Oxygen Isotopes in Cave Drip W... (by )
  • Seasonal Climate Impacts on the Grape Ha... (by )
  • Potential Impact of the 74 Ka Toba Erupt... (by )
  • Variability of Daily Winter Wind Speed D... (by )
  • Climate Warming and Vegetation Response ... (by )
  • Tephrostratigraphic Studies on a Sedimen... (by )
  • Corrigendum to Quantitative Reconstructi... (by )
  • Technical Note: How Accurate Can Stalagm... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.